
 

 

Nonlinear Optics (NLO) 

 V 2.0 (Feb. 2017) 

Most of the experiments performed during this course are perfectly described by the 

principles of linear optics. This assumes that interacting optical beams (i.e. beams 

crossing paths) will not affect each other. As the light intensity is increased, however, this 

assumption no longer holds; we are forced to consider the possibility of nonlinear 

interactions. Nonlinear optical effects manifest in a a variety of phenomena including 

frequency (wave) mixing, harmonic generation, self-focusing, and multi-photon 

absorption.  The NLO experiments in this lab are designed to introduce students to some 

of these interactions using simple setups. Before diving into the experimental procedures, 

a student must have a basic understanding of the foundational principles of nonlinear 

optics.  See, for example : http://phys.strath.ac.uk/12-370/ .  

 

An important concept is the time response of a light-matter interaction.  Although any 

physical interaction cannot be instantaneous, we can reasonably assume the response to 

be instantaneous if it occurs within (i.e. less than) the period of an optical cycle. In that 

case, we can express the total polarization of the material when irradiated by an optical 

field E(t) to contain a nonlinear response represented by nonlinear susceptibility 
(2)

, 


(3)

, .., in addition to the usual linear susceptibility 
(1)

:  
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Here 
(n)

 represents the n-th order nonlinear susceptibility and 0 is the permittivity of 

free space. Recall that the linear response 
(1)

 contains the refractive index of the 

material: 𝑛0 = √1 + ℜ{𝜒(1)}   and the (linear) absorption coefficient: 

𝛼0 = (
4𝜋

𝜆0
)√1 + ℑ{𝜒(1)} where 0 is the wavelength of light in vacuum.   

In the most general case, assuming  𝐸(𝑡) = ∑ 𝐴𝑗𝑐𝑜𝑠(𝜔𝑗𝑡 − 𝑘𝑗 . 𝑟); 𝑗 = 1,2, …𝑗 , the 

nonlinear polarization terms in Eq. (1) can result in many combinations of frequencies. 

For example, the second order response 
(2)

 can produce new optical fields with 

frequencies 2j (second harmonic),  = 0 (a DC term corresponding to optical 

rectification), and jm (mj, sum and difference frequencies). The third-order 

nonlinearity 
(3)

 will result in 3j (third harmonic), and a variety of sum and difference 

frequency generation terms that are often described as four-wave mixing. Only materials 

with a broken centro-symmetry have a nonzero 
(2)

 .  All even-order coefficients vanish 

in symmetric systems. In solids, only crystals that lack inversion symmetry have nonzero 

http://phys.strath.ac.uk/12-370/


 

 


(2)

 tensor elements.   Every optical material must have a nonzero 
(3)

 and higher odd-

order response.  In practice, it is rare and difficult to experimentally investigate 

nonlinearities that are higher order than 3.  

 

(a) Second Harmonic Generation (SHG) 

The NLO experiments in this lab will use a single monochromatic beam of light (laser) 

with frequency 1.  The 2
nd

 order nonlinear polarization will give rise to 21 and a DC 

term.  You are required to investigate the second harmonic generation (SHG) process in a 

nonlinear crystal (not the DC term) which describes optical rectification.  The SHG 

process is a useful for generating high power coherent beams at the visible and ultraviolet 

wavelengths starting from readily available infrared laser sources.  The conversion 

efficiency and other characteristic of SHG are governed by the Maxwell equations, once 

the nonlinear polarization is identified:   
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Details are left for advanced courses such as PHYC 568. Results of this analysis are 

highly pertinent to your experiments.  

 

Energy conservation requires that each second harmonic photon is generated at the 

expense of two photons from the fundamental field; +2. The fundamental photons 

are annihilated.  Momentum conservation demands that the wave-vectors obey the 

following vector addition: �⃗� (𝜔) + �⃗� (𝜔) = �⃗� (2𝜔) .  When all the fields are co-

propagating, we can drop the vector notation and use the amplitude only: |k()|=n()/c. 

Any deviation from the perfect matching condition is described by 

𝛥𝑘 = 2𝑘(𝜔1) − 𝑘(2𝜔1) = (
2𝜔1

𝑐
) (𝑛(𝜔1) − 𝑛(2𝜔1))  (3) 

Wave-vector conservation (k=0) is not possible in general due to normal dispersion. 

Fortunately, many nonlinear crystals are anisotropic: the refractive index depends on the 

direction of polarization (birefringence).  A uniaxial birefringent crystals is characterized 

by no() (ordinary) and ne() (extra-ordinary) refractive indices that correspond to 

polarization normal to and parallel to the axis of symmetry of the crystal (c-axis), 

respectively. Further fine tuning is provided by the angle (=m) between the direction of 



 

 

propagation and the c-axis that leads to no() and ne(,). From crystal optics analysis, 

one finds that for a uniaxial crystal: 

𝑐𝑜𝑠2𝜃

𝑛𝑜
2 +

𝑠𝑖𝑛2𝜃

𝑛𝑒
2 =

1

𝑛𝑒
2(𝜃)

  (4) 

The Type-I phase-matching condition suggests that we choose the angle =m such that  

no()=ne(2,m) or no(2)=ne(,m) depending on the type of the birefringence. Crystals 

with ne>no  are called positive uniaxial, and those with ne<no are  known as negative 

uniaxial. There is also Type-II phase matching that has no()+ne(,m)= 2ne(2,m) or 

no()+ne(,m)= 2no(2), again depending on the type of birefringence. In this case, the 

polarization of fundamental beam is rotated by 45
o
 (or crystal is re-oriented) such that 

there are equal amount of ordinary and extra-ordinary components in the fundamental 

beam. For more details, see this link.  Given a nonlinear crystal and its empirical 

Sellmeier equations for its wavelength-dependent principal refractive indices, you can 

calculate the phase matching angle.   You may also download the SNLO software and 

find phase matching conditions for a variety of crystals and all types of wave-mixing 

processes.  

Perfect phase matching with a sufficiently long nonlinear crystal at high enough 

intensities can, in principle, result in 100% optical power conversion from fundamental to 

the SHG wavelength.  For low SHG conversion (known as low depletion limit), there is  a 

simple solution to Eq. (1) that gives the intensity of the second harmonic at 2  in terms 

of the fundamental intensity I() for a crystal of length 𝑙:   

𝐼2𝜔 =
2𝜔2𝑑𝑒𝑓𝑓

2 𝑙2

𝑛3𝑐3𝜖0
(

𝑠𝑖𝑛(
𝛥𝑘𝑙

2
)

𝛥𝑘𝑙

2

)

2

𝐼𝜔
2  ,   (5) 

where deff (d=
(2)

/2) reflects the tensor product of 
(2)

 and E-field at the fundamental 

frequency. Consult the SNLO software for deff for a given nonlinear crystal with Type-I 

or Type-II phase matching.  

 

Question:  The above equation was derived assuming plane waves. Ignoring diffraction, 

what is the power conversion efficiency assuming I=I0exp(-r
2
/w

2
)? If the incident laser 

is also pulsed such that I=I0exp(-r
2
/w

2
)exp(-t

2
/t

2
p), what is the energy conversion 

efficiency per pulse? 

 

http://www.physi.uni-heidelberg.de/~schmiedm/Vorlesung/LasPhys02/LectureNotes/OpticsCrystals.pdf
http://www.unitedcrystals.com/BBOProp.html
https://en.wikipedia.org/wiki/Sellmeier_equation
http://www.as-photonics.com/snlo
http://www.as-photonics.com/snlo


 

 

 

(c) Optical Kerr Effect (OKE)  

Third-order nonlinearities are the next higher order, resulting in 
(3)

 effects.  As with the 

second-order 
(2)

 interactions, a variety of frequency mixing can result from 3rd order 

nonlinearities.  When the incident beam is a single monochromatic field E=A0cos(1t-

k1z), the 3
rd

 order polarization 
(3)

E
3
 results in two terms only: a 31 term (third-

harmonic generation) and a term at the fundamental frequency 1. The total polarization 

at 1 is the sum of the linear and nonlinear terms: 

𝑃(1) = 𝜖0(𝜒
(1) + 3𝜒(3)𝐴0

2)𝐸  .  (6) 

The term in the bracket simply implies that the 
(1)

 is now modified by an intensity 

dependent term (𝐼 ∝ 𝐴0
2 ).  Using arguments similar to those following Eq. (1), the 

refractive index n will vary with the light intensity: 

𝑛 = 𝑛0 + 𝑛2𝐼,  (7) 

Question: What is the relation between n2 and Re{(3)
}? 

 

Intensity-dependent refraction is also known as the optical Kerr effect (OKE).   This has 

many applications in photonics including controlling light with light (optical switching), 

optical solitons in fibers, mode-locking, and ultrashort pulse generation in solid-state 

lasers.  

Mode-locking relies on the spatial consequence of OKE. For example, a Gaussian laser 

beam where I=I0exp(-2r
2
/w

2
) produces a gradient index profile n(r) when inserted into Eq. 

(7). Elementary optics shows that a gradient index profile will lead to lensing. This self-

lensing (also known as Kerr-lensing) can cause self-focusing (n2>0) or self-defocusing 

(n2<0).  These so-called “self-action” phenomena can also be used as tools for measuring 

the n2 coefficient in materials.  A sensitive and popular technique known as Z-scan uses 

the self-lensing effect to measure the nonlinear refraction in a simple setup. A nonlinear 

sample is scanned along the z-axis near the focus of a lens and its far-field transmission 

through an aperture is measured.  See this online demo. You will be asked to perform Z-

scan experiments to measure various nonlinearities including two-photon absorption as 

described below.    

  

http://www.optics.unm.edu/sbahae/z-scan.htm


 

 

 

Two-photon absorption in 

semiconductors: Example: 

CdTe under irradiation by 

=1064 nm laser pulses. 

Show that 2PA is also 

allowed for =1.55 m.   


=1

.0
6

 
m

CdTe

Eg=1.4 eV

(d) Two-Photon Absorption (TPA or 2PA) 

In general 
(3)

 is a complex quantity (like 
(1)

) with its 

imaginary component associated with “absorption”; it 

becomes nonzero only at or near an electronic resonance 

of the material. In the nonlinear response, this is associated 

with a multi-photon resonance: the combined energy of 

two or more photons are needed to make a resonant 

transition.  In the case of 
(3)

,   when 2=0 (0 is the 

material’s resonance), we encounter two-photon 

absorption where material is excited by simultaneously 

absorbing two photons of the incident beam. Similar to 

equation (7), we can write an intensity-dependent 

absorption coefficient:  

𝛼 = 𝛼0 + 𝛼2𝐼.  (8) 

Here 2 describes the two-photon absorption coefficient.  

NOTE: Many authors or texts may use  instead of 2 

Question: What is the relation between 2 and Im{(3)
}? 

In semiconductors, this is often observable when the incident photon energy  exceeds 

half the band-gap energy Eg (or 2 >Eg) and the irradiance is high enough. The 

propagation of a beam experiencing two-photon absorption is then governed by a 

nonlinear Beer’s law: 

𝑑𝐼

𝑑𝑧
= −𝛼0𝐼 − 𝛼2𝐼

2  (9) 

 At the same time, one can track the population of the excited state.  In the case of 

semiconductors, this is the time-evolution of the density of electrons in the conduction 

band (Ne) or holes in the valance band (Nh=NeNeh): 

𝑑∆𝑁𝑒ℎ

𝑑𝑡
=

𝛼0𝐼

ℏ𝜔
+

𝛼2𝐼
2

2ℏ𝜔
−

∆𝑁𝑒ℎ

𝜏
   (10) 

where  is the effective electron-hole recombination lifetime.  In cases where TPA is 

studied in the transparency regime of a semiconductor (2 >Eg>  it is quite 

reasonable to ignore linear absorption (i.e. assume 00).  

 



 

 

(e) Non-instantaneous Nonlinearities: 

Nonlinear refraction and absorption as described by Equations (7) and (8) imply the 

response is instantaneous which, in this case, means the it should be faster than the laser 

pulsewidth. This often requires relatively high peak powers and tightly focused pulsed 

lasers.  There are however other mechanism that are relatively slow and therefore 

cumulative. These types of nonlinearities are in principle a cascading process and more 

easily observed.  For example, the refractive index can also vary with temperature due to 

various factors. This is known as the thermo-optic effect and it is quantified by the 

thermo-optic coefficient 
𝑑𝑛

𝑑𝑇
: 

𝑛 = 𝑛0 +
𝑑𝑛

𝑑𝑇
𝛥𝑇 , (11) 

where T is the temperature change.  An intensity-dependent effect then results when we 

consider laser induced heating due to absorption in the sample: 

𝐶𝑣
𝑑𝛥𝑇

𝑑𝑡
= 𝛼0𝐼 + 𝜅𝛻2𝑇 (12) 

Where Cv (J/cm
3
/K) is the heat capacity, and  𝜅 is the coefficient of thermal conductivity. 

It is also assumed that all the absorbed power is converted to heat. For cases where only a 

fraction (is converted to heat (i.e. the rest is fluorescence), then we must use  If 

the laser pulsewidth (tp) is shorter than the thermal diffusion time (d𝑤2 𝐶𝑣 𝜅⁄ , we 

ignore the diffusion term and estimate  ∆𝑇(𝑡) ≈
1

𝐶𝑣
∫ 𝛼0𝐼(𝑡

′)𝑑𝑡′
𝑡

−∞
.   Time averaging over 

the duration of a Gaussian pulse further simplifies this to   < ∆𝑇 >≈
√𝜋

2𝐶𝑣
𝛼0𝐼0𝑡𝑝 . With the 

use of (11), one can now write: 

〈𝑛〉 ≈ 𝑛0 + [
𝑑𝑛

𝑑𝑇

√𝜋

2𝐶𝑣
𝛼0𝑡𝑝] 𝐼0  (13) 

Notice that this mimics the optical Kerr effect and result in self-action observable in, for 

example, Z-scan experiments.  Thermal lensing can be used in determine small amounts 

of absorption in materials.   

In the case of CW laser radiation or when long pulses (with duration >>d) are used, the 

steady-state approximation to Eq. (12) gives: ∆𝑇 ≈
1

κ
𝛼0𝐼0w

2 =
2

πκ
𝛼0P0  , where P0 is the 

laser power. This, in turn leads to refractive index changes of 𝑛 ≈ 𝑛0 + [
𝑑𝑛

𝑑𝑇

2

πκ
𝛼0]𝑃0  and 

subsequently a thermal phase shift  𝜃 =
𝛼0𝑃𝐿

𝜆𝜅 

𝑑𝑛

𝑑𝑇
.  We will see shortly how this can be 

measure in a thermal Z-scan measurement.  



 

 

Another cascading effect may result from the change of refractive index due to changes 

in population density in various states.  For semiconductors, this is written as: 

𝑛 = 𝑛0 +
𝑑𝑛

𝑑∆𝑁𝑒
𝛥𝑁𝑒ℎ ≡ 𝑛0 + 𝜎𝐹𝐶𝑅𝛥𝑁𝑒ℎ (14) 

where 𝜎𝐹𝐶𝑅 is the free carrier refraction coefficient.  From simple models that include the 

band-filling (saturation) effects, it has been shown to follow an approximate scaling law:   

𝜎𝐹𝐶𝑅(𝑐𝑚−3) ≈
5×10−21

𝑛0𝐸𝑔
3 

𝐻(
ℏ𝜔

𝐸𝑔
) where Eg (eV) is the bandgap energy and H(x)=[x

2
(x

2
-1)]

-1
.  

For more details, you may consult the literature in the following links: Said et. al.  & 

Sheik-Bahae/van Stryland.  

 

A corresponding nonlinearity can be written for the absorption:  

𝛼 = 𝛼0 + 𝜎𝐹𝐶𝐴𝛥𝑁𝑒ℎ .(15) 

where 𝜎𝐹𝐶𝐴  is known as the free-carrier absorption (FCA) cross-section.  In intrinsic 

(undoped) semiconductors, FCA is often dominated by transition between heavy-hole 

and light-hole valence bands, and scales with 
p
 (p2-3).   

 

 

 

      

   

  

http://www.optics.unm.edu/sbahae/publications/creol/said-JOSA-B92.pdf
http://www.optics.unm.edu/sbahae/publications/NLO%20in%20transparecny%20region-%20MSB&EVS-1999%20-reprint.pdf


 

 

 

Experiments:  

For all the experiments described below, you will have two pulsed lasers at your disposal: 

Laser 1.  A modelocked diode laser/fiber amplifier 

system by Raydiance.  See Appendix-A for more 

details.  

 Pulse energy: 1 μJ to 5 μJ  

 Wavelength: 1.55 μm 

 Pulse rate: 1Hz to 500 kHz 

 Pulse width: 800 fs  (1ps) 

 Fully software controlled 

 Peak Power (calculate it)  

 Spot Size (?) 

 

Laser 2. A diode-pumped Q-switched Nd:YAG laser with the following characteristics 

by the manufacturer (CNI): Wavelength: 0=1064.59 nm 

 Average Power: 2.35W 

 Pulse Duration: 2.4 ns (measure it as it varies!) 

 Repetition Rate: 10kHz 

 Peak Power:  You calculate it! 

 Pulse Energy: You calculate it! 

 Beam Spot <2mm 

 
Changchun New Industries Optoelectronics Tech. Co. 
Contact:  +86-431-85603799       http://www.cnilaser.com,   sales@cnilaser.com 

 

Note:  Use Laser-1 for your experiments unless (a) it is not working or (b) you have time 

and are interested to repeat the experiments at 1.06 m and nanosecond pulses.  

  

http://www.cnilaser.com/


 

 

 

i) SHG Experiments: 

NLO Crystal: -Barium Borate  (β-BaB2O4
 
)- known as BBO 

Thickness 𝑙=3mm.  The crystal is cut so the c-axis is normal the surfaces as shown.  

Data:  

Refractive index n ( in m)  http://www.unitedcrystals.com/BBOProp.html    

  

no ( ) 2.7359
0.01878


2

0.01822

 0.01354
2



,     

ne ( ) 2.3753
0.01224


2

0.01667

 0.01516
2



 

  

Nonlinear coefficient:  

 

𝑑𝑒𝑓𝑓
(𝐼) = 𝑑31𝑠𝑖𝑛(𝜃) + (𝑑11𝑐𝑜𝑠(𝜙) − 𝑑22𝑠𝑖𝑛(3𝜙))𝑐𝑜𝑠 (𝜃) 

𝑑𝑒𝑓𝑓
(𝐼𝐼) = (𝑑11𝑠𝑖𝑛(3𝜙) + 𝑑22𝑐𝑜𝑠(3𝜙))𝑐𝑜𝑠2(𝜃)  

where d11=0,  d22=-2.2, d31=0.08 (pm/V)  for BBO crystal (Group 3m) 

 

Laser damage threshold (=1064 nm):  5 GW/cm
2
 (10 ns); 10 GW/cm

2
 (1.3 ns) 

 

Reference: Eckardt et al, IEEE J. QE-26,   992 (1990),  

also see https://www.coherent.com/downloads/BBO_DS.pdf  

 

 

 

  

c-axis 

http://www.unitedcrystals.com/BBOProp.html
https://www.coherent.com/downloads/BBO_DS.pdf


 

 

Experimental Set-up: 

 

Procedure: 

a) Calculate type-I PM angle (m) (Note: Beware of the Snell’s law) 

b) Phase matching angle  is adjusted by rotating around an axis normal to the 

optical table as depicted in Fig. above that shows the top view.  Determine the 

correct polarization (S or P) of the incident fundamental and the generated second 

harmonic fields.   Choose appropriate polarizer and waveplate to achieve the 

correct polarization.   

c) From above, calculate the (external) acceptance angle  (i.e. the angular spread 

that the crystal is phase-matched).  What limitation does this impose on the spot 

size of the beam? (Hint: think diffraction and beam divergence )  

d) Measure I(2) vs  around m 

e) Describe the shape of the SH beam.  If not circular, explain how is this related to 

Part (b) above?  

f) Calculate Type-II PM angle 

g) Measure and plot I(2) vs   (The current BBO crystal lateral dimensions may 

limit you in performing this experiment)  

h) Measure and plot I(2) vs azimuthal angle  (around the c-axis) 

i) For optimum value of , determine the conversion efficiency P(2)/P() versus  

and compare it with Eq. (5). Note that in addition to k(), the effective length of 

the crystal also varies with ℓ as it is given by 𝑙/cos(’) where ’ is the internal 

angle (use the Snell’s law).  

j) Measure and compare the beam radius and the pulse width for  and 2 beams. 

Explain your results.   



 

 

ii) Z-scan Experiment: 

 

 

 In the following experiments you will observe the effects of nonlinear absorption (NLA) 

and nonlinear refraction (NLR) using the Z-scan technique. You will be then able to infer 

the nonlinear optical coefficients and potentially other material parameters from your 

data. The standard Z–scan set-up is shown in figure above where we measure the far-field 

transmission of the laser beam through an aperture while scanning the sample along the 

propagation axis (z).   

 

Nonlinear refraction causes beam distortion (self-action) but not absorption loss. If the 

aperture is removed or fully opened, nonlinear refraction should not cause any change of 

transmitted power as the sample is translated along z.  In the presence of nonlinear 

absorption such as TPA, however, an open aperture Z-scan will reveal position-

dependent nonlinear transmission as described by the nonlinear Beer’s law in Eq. (9).  

 

In a single-beam Z-scan experiment, the sample is scanned in the vicinity of a focused 

laser beam.  The scan range is typically from z = -6Z0 to + 6Z0 where Z0=w0
2
/  is the 

Rayleigh range with w0 being the focal (minimum) spot size. In the presence of optical 

Kerr effect (n=n0+n2I), the normalized transmittance T of a thin sample (L<Z0) through a 

partially closed far-field aperture is approximated as: 

 

𝑇(𝑥) ≅ 1 + ΔΦ0
4𝑥

(𝑥2+1)(𝑥2+9)
   ,(16) 

where ΔΦ0 =
2𝜋

𝜆
 𝑛2𝐼0𝐿 is the on-axis nonlinear phase shift at the focus, and 𝑥 = 𝑍/𝑍0. 

The above expression is valid for  ΔΦ0 < 1  , preferably 0.5.  



 

 

 

The resulting behavior is shown in the above figure above for both positive and negative 

nonlinearities. Both the magnitude and sign of n2 can be obtained. The signature 

characteristic of a Z-scan is the presence of a peak and valley. Their separation in z is 

obtained from Eq. (16): 

Δ𝑍𝑝−𝑣 ≈ 1.7𝑍0  (17) 

The amplitude difference between peak and valley can also be obtained from Eq. (16): 

Δ𝑇𝑝−𝑣 ≈ 0.406 × ΔΦ0  

The above analysis works when the aperture is nearly closed.  In general, the 

transmission set by the aperture (S) can be anywhere in the range 0 < S < 1 and the 

simple formulas are no longer valid.  The following empirical expression best fits the 

exact theoretical calculation for the Z-scan transmittance in the general case: 

Δ𝑇𝑝−𝑣 ≈ 0.406 × ΔΦ0 (1 − 𝑆)0.27  (18) 

When nonlinear absorption (e.g. TPA) is appreciable and accompanies nonlinear 

refraction, the Z-scan transmittance curves are altered by the nonlinear loss (smaller T) in 

the region of the focus. To quantify this, one first performs an open aperture (S=1) Z-scan. 

The transmitted signal is insensitive to beam distortion caused by nonlinear refraction, i.e. 

the Z-scan curve is only caused by nonlinear loss. The lowest order change in the open-

aperture Z-scan transmittance of a Gaussian beam is then: 



 

 

𝑇(𝑥, 𝑆 = 1) ≅ 1 −
q0

2(𝑥2+1)2
  ,(19) 

where q0=I0L.  The above expression is valid for T<15%. Temporal averaging 

(assuming Gaussian pulses), leads to < ΔΦ0 >= ΔΦ0/√2  and  < 𝑞0 >= q0/√2 .    

It is therefore a good approximation to take a closed-aperture Z-scan transmittance as: 

𝑇(𝑥, 𝑆) ≅ 1 + ΔΦ0

4𝑥(1 − 𝑆)0.27

(𝑥2 + 1)(𝑥2 + 9)
− q0

1

2(𝑥2 + 1)2
 

Note that by performing an open aperture (S=1) scan and then subtracting it from the 

closed-aperture we can retrieve (separate) the nonlinear refraction component from which 

n can be inferred. Example calculations of open-aperture and closed aperture Z-scan 

traces (T) are given below for q0>0 (eg. two-photon absorption) for positive and 

negative n2. 

 

  



 

 

 

Thermo-Optic Z-scan: 

In the presence of loss from linear and/or nonlinear absorption, optical energy is 

deposited into the material, which in turn leads to heating. We neglect the possibility of 

cooling on the timescale of the experiment here, although this is not always valid.  The 

ensuing thermal lensing becomes the dominant nonlinear refraction for CW or relatively 

long laser pulses and/or when the absorption coefficient is large.   

CW Thermal Lensing:  In the case of CW laser radiation, steady-state thermal lensing 

driven by transverse thermal heat conduction has been shown to give a Z-scan 

transmission trace that follows: 

𝑇(𝑥) = 1 + 𝜃 atan [
2𝑥

3+𝑥2],  (20) 

where x = Z/Z0, and 𝜃 =
𝛼0𝑃𝐿

𝜆𝜅 
[
𝑑𝑛

𝑑𝑇
+ (𝑛 − 1)

1

𝐿

𝑑𝐿

𝑑𝑇
]  is the thermal induced on-axis phase 

shift.  Note that here we also included the longitudinal thermal expansion of the material 
1

𝐿

𝑑𝐿

𝑑𝑇
 that will introduce additional thermal lensing.  See references below: 

https://www.osapublishing.org/josab/abstract.cfm?uri=josab-19-6-1342 

http://www.sciencedirect.com/science/article/pii/S0022309306007277  

Pulsed Thermal Lensing:  As described earlier, when short laser pulses are used, thermal 

conduction may be ignored and, as deduced from Eq. (13), we obtain   < 𝑛2
𝑒𝑓𝑓

>≈

𝑑𝑛

𝑑𝑇

√𝜋

2𝐶𝑣
𝛼0𝑡𝑝.  This is the case that you most likely encounter in the lab experiments (you 

should verify this).  Under this 

assumption, the “normal” Z-scan analysis, 

as given by Eq. 16-18, can be used to 

analyze the data by simply using   

〈ΔΦ0〉 =
2𝜋

𝜆
 
𝑑𝑛

𝑑𝑇

√𝜋

2𝐶𝑣
𝛼0𝑡𝑝𝐼0𝐿.  

A comparison of Z-scan trances for CW-

thermal and pulsed (instantaneous) 

nonlinearities is depicted in Fig. below: 

 

 

 

https://www.osapublishing.org/josab/abstract.cfm?uri=josab-19-6-1342
http://www.sciencedirect.com/science/article/pii/S0022309306007277


 

 

Experiments:  Rapid Z-scan Set Up:   

 

 

The above set up assumes the 1064 nm laser. It is essentially the same when using 

the 1.55 m laser.  

 

  



 

 

A. Pulsed Thermo-Optic Z-scan: 

Samples: ND-filters (absorbing) with various absorption losses. Material: BK7  

-Knowing (estimating) the beam radius at the focus,  find the thermal diffusion time 

𝜏𝑑 ≈ 𝑤2 𝐶𝑣 𝜅⁄  for BK7.  Assure that tp<<d.   

-The rapid-scan stage operates at .2-1 Hz.  Compare the thermal diffusion time with the 

scan period (peak-valley scan time) and discuss the potential complications if these time-

constants become comparable.   

-Record Z-scan traces.  Measure Zp-v and obtain Z0.  Compare with expected value from 

laser data.   

 

 

B. Instantaneous Z-scan 

Samples: ZnSe (polycrystalline), 3mm,  CdTe  (crystalline), 2mm 

 Perform open and closed aperture Z-scans on both samples. 

 Plot the transmittance changes (Tmin for S=1, and Tp-v for S=0.1) as a function of 

incident power (for 5 different powers). 

 Deduce n2, , and any possibly other nonlinear coefficients defined earlier.  

 

Useful references: 

M. Sheik-Bahae and E.W. Van Stryland,  Optical Nonlinearities in the Transparency Region of 

Bulk Semiconductors,   in Nonlinear Optics of Semiconductors, E. Garmire and A. Kost, 

Eds.,  Volume 58 of Semiconductor and Semimetals, pp. 257-318, Academic Press (1998)  

A. A. Said,  M. Sheik-Bahae , D.J. Hagan, T.H. Wei, J. Wang, J. Young, E.W. Van 

Stryland,  ''Determination of Bound and Free-Carrier Nonlinearities in ZnSe, GaAs, CdTe, and 

ZnTe,'' J. Opt. Soc. Am. B.  9 , 409 (1992)  

Z-Scan, E. W. Van Stryland and M. Sheik-Bahae, , in Characterization Techniques and 

Tabulations for Organic Nonlinear Materials,  M. G. Kuzyk and C. W. Dirk, Eds., page 655-

692,  Marcel Dekker, Inc., 1998 

  

http://www.optics.unm.edu/sbahae/publications/NLO%20in%20transparecny%20region-%20MSB&EVS-1999%20-reprint.pdf
http://www.optics.unm.edu/sbahae/publications/NLO%20in%20transparecny%20region-%20MSB&EVS-1999%20-reprint.pdf
http://www.optics.unm.edu/sbahae/publications/creol/said-JOSA-B92.pdf
http://www.optics.unm.edu/sbahae/publications/creol/said-JOSA-B92.pdf
http://www.optics.unm.edu/sbahae/publications/z-scan.pdf


 

 

 

Appendix A: Operation of Raydiance Fiber Laser 

The experiment uses a commercial mode-locked diode-laser/fiber amplifier made by 

Raydiance, now part of Coherent Inc. Key parameters are  = 1.55 m and pulse duration 

~ 800 fs. The energy and repetition rate of the laser are adjustable and the beam is 

elliptically polarized.  

DANGER: Although there is not enough average laser power to burn clothing, skin, or 

equipment, the peak power in a short pulse can permanently damage the retina. The laser 

used in this experiment is not eye-safe, which requires that PROTECTIVE EYEWEAR 

MUST BE WORN whenever the laser is on. Only approved, specially marked laser 

safety glasses available in the lab are acceptable. An added complication is that the beam 

is infrared and thus not visible. It is the responsibility of the experimenters to secure the 

lab and control access to it. 

Turn on the ThermoCube chiller; switch can be found on the left side of the enclosure. 

Push the Start/Stop button. You should see – TEMP in the display. The chiller should 

quickly reach the 17C setpoint. If *TEMP is displayed, no cooling is occurring and the 

laser will overheat. 

The Raydiance laser is comprised of two 

blue boxes. The smaller box is the 

oscillator and the large lower box is the 

amplifier. Turn on the amplifier box first; 

its switch is located on the upper-right 

back panel. Wait 30 seconds, then turn on 

the oscillator switch located in the same 

position on its rear panel. 

Observe the front panel display and wait 

for SYSTEM OFF to appear. This will take several minutes. Next launch the Raydiance 

Laser System application found on the desktop. You should see WARM UP flashing and 

“Warming up” on the panel display. Warm-up will take several minutes, after which the 

system will emit a loud beep.   When warm-up is complete, reach around the periscope 

and open the shutter by sliding the knob on the front panel to the right. Be careful not to 

disturb the periscope optics. 

Set the desired pulse energy and repetition rate. Activate the Booster Pumps by pressing 

the switch on the program user interface. Wait ~ 1 minute for the system to activate and 

then turn the laser beam on. NOTE: The laser and booster pumps must be switched off 

and re-started to change the pulse energy. The shutdown procedure is the reverse of the 

startup. 


